TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
نویسندگان
چکیده
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
منابع مشابه
Climate Change Impact on Precipitation Extreme Events in Uncertainty Situation; Passing from Global Scale to Regional Scale
Global warming and then climate change are important topics studied by researchers throughout the world in the recent decades. In these studies, climatic parameters changes are investigated. Considering large-scaled output of AOGCMs and low precision in computational cells, uncertainty analysis is one of the principles in doing hydrological studies. For this reason, it is tried that investigati...
متن کاملBasin-scale water-balance estimates of terrestrial water storage variations from ECMWF operational forecast analysis
[1] In recent publications, a new basin-scale dataset of monthly variations in terrestrial water storage (BSWB) was derived for the ERA40 time period (1958–2002) using an atmospheric-terrestrial water-balance approach (Seneviratne et al., 2004; Hirschi et al., 2006). Here, we test the feasibility of using ECMWF operational forecast analyses – available for the recent time period in near real ti...
متن کاملFLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015
Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as ...
متن کاملAssessment of the Monthly Water Balance in an Arid Region Using TM Model and GIS (Case Study: Pishkouh Watershed, Iran)
Monthly discharge is one of the most important factors considered in designs and hydrological works. Some watersheds are not equipped with needed hydrometric equipment. In such a case average monthly discharge could be estimated from regional monthly water balance models of representative watersheds. In this study, Thornthwaite & Mather (TM) model were used in the Pishkouh watershed in arid cli...
متن کاملSeasonal temperature and precipitation recorded in the intra-annual oxygen isotope pattern of meteoric water and tree-ring cellulose
Modern and ancient wood is a valuable terrestrial record of carbon ultimately derived from the atmosphere and oxygen inherited from local meteoric water. Many modern and fossil wood specimens display rings sufficiently thick for intra-annual sampling, and analytical techniques are rapidly improving to allow for precise carbon and oxygen isotope measurements on very small samples, yielding unpre...
متن کامل